direct product, metabelian, soluble, monomial, A-group
Aliases: C5×C32⋊C4, C32⋊C20, C3⋊S3.C10, (C3×C15)⋊5C4, (C5×C3⋊S3).1C2, SmallGroup(180,23)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3⋊S3 — C5×C3⋊S3 — C5×C32⋊C4 |
C32 — C5×C32⋊C4 |
Generators and relations for C5×C32⋊C4
G = < a,b,c,d | a5=b3=c3=d4=1, ab=ba, ac=ca, ad=da, dcd-1=bc=cb, dbd-1=b-1c >
Character table of C5×C32⋊C4
class | 1 | 2 | 3A | 3B | 4A | 4B | 5A | 5B | 5C | 5D | 10A | 10B | 10C | 10D | 15A | 15B | 15C | 15D | 15E | 15F | 15G | 15H | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | |
size | 1 | 9 | 4 | 4 | 9 | 9 | 1 | 1 | 1 | 1 | 9 | 9 | 9 | 9 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | 1 | i | -i | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | i | i | -i | i | -i | i | -i | -i | linear of order 4 |
ρ4 | 1 | -1 | 1 | 1 | -i | i | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -i | -i | i | -i | i | -i | i | i | linear of order 4 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | ζ52 | ζ5 | ζ53 | ζ54 | ζ52 | ζ53 | ζ53 | ζ5 | ζ5 | ζ54 | ζ54 | ζ52 | ζ5 | ζ54 | ζ53 | ζ53 | ζ52 | ζ52 | ζ5 | ζ54 | linear of order 5 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | ζ53 | ζ54 | ζ52 | ζ5 | ζ53 | ζ52 | ζ52 | ζ54 | ζ54 | ζ5 | ζ5 | ζ53 | ζ54 | ζ5 | ζ52 | ζ52 | ζ53 | ζ53 | ζ54 | ζ5 | linear of order 5 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | ζ54 | ζ52 | ζ5 | ζ53 | ζ54 | ζ5 | ζ5 | ζ52 | ζ52 | ζ53 | ζ53 | ζ54 | ζ52 | ζ53 | ζ5 | ζ5 | ζ54 | ζ54 | ζ52 | ζ53 | linear of order 5 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | ζ53 | ζ5 | ζ54 | ζ52 | ζ53 | ζ54 | ζ52 | ζ5 | ζ53 | ζ52 | ζ52 | ζ54 | ζ54 | ζ5 | ζ5 | ζ53 | -ζ54 | -ζ5 | -ζ52 | -ζ52 | -ζ53 | -ζ53 | -ζ54 | -ζ5 | linear of order 10 |
ρ9 | 1 | 1 | 1 | 1 | -1 | -1 | ζ54 | ζ53 | ζ52 | ζ5 | ζ54 | ζ52 | ζ5 | ζ53 | ζ54 | ζ5 | ζ5 | ζ52 | ζ52 | ζ53 | ζ53 | ζ54 | -ζ52 | -ζ53 | -ζ5 | -ζ5 | -ζ54 | -ζ54 | -ζ52 | -ζ53 | linear of order 10 |
ρ10 | 1 | 1 | 1 | 1 | -1 | -1 | ζ52 | ζ54 | ζ5 | ζ53 | ζ52 | ζ5 | ζ53 | ζ54 | ζ52 | ζ53 | ζ53 | ζ5 | ζ5 | ζ54 | ζ54 | ζ52 | -ζ5 | -ζ54 | -ζ53 | -ζ53 | -ζ52 | -ζ52 | -ζ5 | -ζ54 | linear of order 10 |
ρ11 | 1 | 1 | 1 | 1 | -1 | -1 | ζ5 | ζ52 | ζ53 | ζ54 | ζ5 | ζ53 | ζ54 | ζ52 | ζ5 | ζ54 | ζ54 | ζ53 | ζ53 | ζ52 | ζ52 | ζ5 | -ζ53 | -ζ52 | -ζ54 | -ζ54 | -ζ5 | -ζ5 | -ζ53 | -ζ52 | linear of order 10 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | ζ5 | ζ53 | ζ54 | ζ52 | ζ5 | ζ54 | ζ54 | ζ53 | ζ53 | ζ52 | ζ52 | ζ5 | ζ53 | ζ52 | ζ54 | ζ54 | ζ5 | ζ5 | ζ53 | ζ52 | linear of order 5 |
ρ13 | 1 | -1 | 1 | 1 | -i | i | ζ53 | ζ5 | ζ54 | ζ52 | -ζ53 | -ζ54 | -ζ52 | -ζ5 | ζ53 | ζ52 | ζ52 | ζ54 | ζ54 | ζ5 | ζ5 | ζ53 | ζ43ζ54 | ζ43ζ5 | ζ4ζ52 | ζ43ζ52 | ζ4ζ53 | ζ43ζ53 | ζ4ζ54 | ζ4ζ5 | linear of order 20 |
ρ14 | 1 | -1 | 1 | 1 | -i | i | ζ52 | ζ54 | ζ5 | ζ53 | -ζ52 | -ζ5 | -ζ53 | -ζ54 | ζ52 | ζ53 | ζ53 | ζ5 | ζ5 | ζ54 | ζ54 | ζ52 | ζ43ζ5 | ζ43ζ54 | ζ4ζ53 | ζ43ζ53 | ζ4ζ52 | ζ43ζ52 | ζ4ζ5 | ζ4ζ54 | linear of order 20 |
ρ15 | 1 | -1 | 1 | 1 | i | -i | ζ53 | ζ5 | ζ54 | ζ52 | -ζ53 | -ζ54 | -ζ52 | -ζ5 | ζ53 | ζ52 | ζ52 | ζ54 | ζ54 | ζ5 | ζ5 | ζ53 | ζ4ζ54 | ζ4ζ5 | ζ43ζ52 | ζ4ζ52 | ζ43ζ53 | ζ4ζ53 | ζ43ζ54 | ζ43ζ5 | linear of order 20 |
ρ16 | 1 | -1 | 1 | 1 | i | -i | ζ52 | ζ54 | ζ5 | ζ53 | -ζ52 | -ζ5 | -ζ53 | -ζ54 | ζ52 | ζ53 | ζ53 | ζ5 | ζ5 | ζ54 | ζ54 | ζ52 | ζ4ζ5 | ζ4ζ54 | ζ43ζ53 | ζ4ζ53 | ζ43ζ52 | ζ4ζ52 | ζ43ζ5 | ζ43ζ54 | linear of order 20 |
ρ17 | 1 | -1 | 1 | 1 | i | -i | ζ5 | ζ52 | ζ53 | ζ54 | -ζ5 | -ζ53 | -ζ54 | -ζ52 | ζ5 | ζ54 | ζ54 | ζ53 | ζ53 | ζ52 | ζ52 | ζ5 | ζ4ζ53 | ζ4ζ52 | ζ43ζ54 | ζ4ζ54 | ζ43ζ5 | ζ4ζ5 | ζ43ζ53 | ζ43ζ52 | linear of order 20 |
ρ18 | 1 | -1 | 1 | 1 | -i | i | ζ54 | ζ53 | ζ52 | ζ5 | -ζ54 | -ζ52 | -ζ5 | -ζ53 | ζ54 | ζ5 | ζ5 | ζ52 | ζ52 | ζ53 | ζ53 | ζ54 | ζ43ζ52 | ζ43ζ53 | ζ4ζ5 | ζ43ζ5 | ζ4ζ54 | ζ43ζ54 | ζ4ζ52 | ζ4ζ53 | linear of order 20 |
ρ19 | 1 | -1 | 1 | 1 | i | -i | ζ54 | ζ53 | ζ52 | ζ5 | -ζ54 | -ζ52 | -ζ5 | -ζ53 | ζ54 | ζ5 | ζ5 | ζ52 | ζ52 | ζ53 | ζ53 | ζ54 | ζ4ζ52 | ζ4ζ53 | ζ43ζ5 | ζ4ζ5 | ζ43ζ54 | ζ4ζ54 | ζ43ζ52 | ζ43ζ53 | linear of order 20 |
ρ20 | 1 | -1 | 1 | 1 | -i | i | ζ5 | ζ52 | ζ53 | ζ54 | -ζ5 | -ζ53 | -ζ54 | -ζ52 | ζ5 | ζ54 | ζ54 | ζ53 | ζ53 | ζ52 | ζ52 | ζ5 | ζ43ζ53 | ζ43ζ52 | ζ4ζ54 | ζ43ζ54 | ζ4ζ5 | ζ43ζ5 | ζ4ζ53 | ζ4ζ52 | linear of order 20 |
ρ21 | 4 | 0 | 1 | -2 | 0 | 0 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | -2 | 1 | -2 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ22 | 4 | 0 | -2 | 1 | 0 | 0 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | 1 | -2 | 1 | -2 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ23 | 4 | 0 | -2 | 1 | 0 | 0 | 4ζ54 | 4ζ53 | 4ζ52 | 4ζ5 | 0 | 0 | 0 | 0 | -2ζ54 | ζ5 | -2ζ5 | ζ52 | -2ζ52 | ζ53 | -2ζ53 | ζ54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | 0 | -2 | 1 | 0 | 0 | 4ζ52 | 4ζ54 | 4ζ5 | 4ζ53 | 0 | 0 | 0 | 0 | -2ζ52 | ζ53 | -2ζ53 | ζ5 | -2ζ5 | ζ54 | -2ζ54 | ζ52 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 4 | 0 | 1 | -2 | 0 | 0 | 4ζ53 | 4ζ5 | 4ζ54 | 4ζ52 | 0 | 0 | 0 | 0 | ζ53 | -2ζ52 | ζ52 | -2ζ54 | ζ54 | -2ζ5 | ζ5 | -2ζ53 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 4 | 0 | 1 | -2 | 0 | 0 | 4ζ54 | 4ζ53 | 4ζ52 | 4ζ5 | 0 | 0 | 0 | 0 | ζ54 | -2ζ5 | ζ5 | -2ζ52 | ζ52 | -2ζ53 | ζ53 | -2ζ54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ27 | 4 | 0 | 1 | -2 | 0 | 0 | 4ζ52 | 4ζ54 | 4ζ5 | 4ζ53 | 0 | 0 | 0 | 0 | ζ52 | -2ζ53 | ζ53 | -2ζ5 | ζ5 | -2ζ54 | ζ54 | -2ζ52 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 4 | 0 | -2 | 1 | 0 | 0 | 4ζ5 | 4ζ52 | 4ζ53 | 4ζ54 | 0 | 0 | 0 | 0 | -2ζ5 | ζ54 | -2ζ54 | ζ53 | -2ζ53 | ζ52 | -2ζ52 | ζ5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ29 | 4 | 0 | -2 | 1 | 0 | 0 | 4ζ53 | 4ζ5 | 4ζ54 | 4ζ52 | 0 | 0 | 0 | 0 | -2ζ53 | ζ52 | -2ζ52 | ζ54 | -2ζ54 | ζ5 | -2ζ5 | ζ53 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ30 | 4 | 0 | 1 | -2 | 0 | 0 | 4ζ5 | 4ζ52 | 4ζ53 | 4ζ54 | 0 | 0 | 0 | 0 | ζ5 | -2ζ54 | ζ54 | -2ζ53 | ζ53 | -2ζ52 | ζ52 | -2ζ5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 17 23)(2 18 24)(3 19 25)(4 20 21)(5 16 22)(6 29 15)(7 30 11)(8 26 12)(9 27 13)(10 28 14)
(6 15 29)(7 11 30)(8 12 26)(9 13 27)(10 14 28)
(1 8)(2 9)(3 10)(4 6)(5 7)(11 22 30 16)(12 23 26 17)(13 24 27 18)(14 25 28 19)(15 21 29 20)
G:=sub<Sym(30)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,17,23)(2,18,24)(3,19,25)(4,20,21)(5,16,22)(6,29,15)(7,30,11)(8,26,12)(9,27,13)(10,28,14), (6,15,29)(7,11,30)(8,12,26)(9,13,27)(10,14,28), (1,8)(2,9)(3,10)(4,6)(5,7)(11,22,30,16)(12,23,26,17)(13,24,27,18)(14,25,28,19)(15,21,29,20)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,17,23)(2,18,24)(3,19,25)(4,20,21)(5,16,22)(6,29,15)(7,30,11)(8,26,12)(9,27,13)(10,28,14), (6,15,29)(7,11,30)(8,12,26)(9,13,27)(10,14,28), (1,8)(2,9)(3,10)(4,6)(5,7)(11,22,30,16)(12,23,26,17)(13,24,27,18)(14,25,28,19)(15,21,29,20) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,17,23),(2,18,24),(3,19,25),(4,20,21),(5,16,22),(6,29,15),(7,30,11),(8,26,12),(9,27,13),(10,28,14)], [(6,15,29),(7,11,30),(8,12,26),(9,13,27),(10,14,28)], [(1,8),(2,9),(3,10),(4,6),(5,7),(11,22,30,16),(12,23,26,17),(13,24,27,18),(14,25,28,19),(15,21,29,20)]])
G:=TransitiveGroup(30,49);
C5×C32⋊C4 is a maximal subgroup of
C5⋊2F9 C32⋊D20 C32⋊Dic10
Matrix representation of C5×C32⋊C4 ►in GL4(𝔽61) generated by
9 | 0 | 0 | 0 |
0 | 9 | 0 | 0 |
0 | 0 | 9 | 0 |
0 | 0 | 0 | 9 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 60 | 1 |
0 | 0 | 60 | 0 |
0 | 60 | 0 | 0 |
1 | 60 | 0 | 0 |
0 | 0 | 60 | 1 |
0 | 0 | 60 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
G:=sub<GL(4,GF(61))| [9,0,0,0,0,9,0,0,0,0,9,0,0,0,0,9],[1,0,0,0,0,1,0,0,0,0,60,60,0,0,1,0],[0,1,0,0,60,60,0,0,0,0,60,60,0,0,1,0],[0,0,0,1,0,0,1,0,1,0,0,0,0,1,0,0] >;
C5×C32⋊C4 in GAP, Magma, Sage, TeX
C_5\times C_3^2\rtimes C_4
% in TeX
G:=Group("C5xC3^2:C4");
// GroupNames label
G:=SmallGroup(180,23);
// by ID
G=gap.SmallGroup(180,23);
# by ID
G:=PCGroup([5,-2,-5,-2,-3,3,50,2803,93,4004,314]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^3=c^3=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*c*d^-1=b*c=c*b,d*b*d^-1=b^-1*c>;
// generators/relations
Export
Subgroup lattice of C5×C32⋊C4 in TeX
Character table of C5×C32⋊C4 in TeX